首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21744篇
  免费   2621篇
  国内免费   2032篇
化学   12765篇
晶体学   529篇
力学   893篇
综合类   126篇
数学   2428篇
物理学   9656篇
  2024年   55篇
  2023年   223篇
  2022年   342篇
  2021年   513篇
  2020年   717篇
  2019年   674篇
  2018年   660篇
  2017年   842篇
  2016年   1077篇
  2015年   960篇
  2014年   1206篇
  2013年   2124篇
  2012年   1494篇
  2011年   1735篇
  2010年   1298篇
  2009年   1549篇
  2008年   1481篇
  2007年   1507篇
  2006年   1258篇
  2005年   1021篇
  2004年   888篇
  2003年   779篇
  2002年   764篇
  2001年   491篇
  2000年   422篇
  1999年   343篇
  1998年   308篇
  1997年   225篇
  1996年   212篇
  1995年   181篇
  1994年   193篇
  1993年   124篇
  1992年   136篇
  1991年   71篇
  1990年   56篇
  1989年   48篇
  1988年   61篇
  1987年   49篇
  1986年   42篇
  1985年   42篇
  1984年   43篇
  1983年   20篇
  1982年   35篇
  1981年   25篇
  1980年   21篇
  1979年   22篇
  1978年   15篇
  1977年   13篇
  1974年   6篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
According to the one-dimensional quantum state distribution, carrier scattering, and fixed range hopping model, the structural stability and electron transport properties of N-, P-, and As-doped SiC nanowires(N-SiCNWs, P-SiCNWs, and As-SiCNWs) are simulated by using the first principles calculations. The results show that the lattice structure of NSiCNWs is the most stable in the lattice structures of the above three kinds of doped SiCNWs. At room temperature,for unpassivated SiCNWs, the doping effect of P and As are better than that of N. After passivation, the conductivities of all doped SiCNWs increase by approximately two orders of magnitude. The N-SiCNW has the lowest conductivity. In addition, the N-, P-, As-doped SiCNWs before and after passivation have the same conductivity–temperature characteristics,that is, above room temperature, the conductivity values of the doped SiCNWs all increase with temperature increasing.These results contribute to the electronic application of nanodevices.  相似文献   
62.
A new kind of nanocomposite (NC) hydrogel with Na‐montmorillonite (MMT) is presented in this article. The NC hydrogels were synthesized by free radical copolymerization of acrylamide and (3‐acrylamidopropyl) trimethylammonium chloride (ATC) in the presence of MMT and N,N′‐methylene‐bis‐acrylamide used as chemical cross‐linker. Due to the cation‐exchange reaction between MMT and ATC (cationic monomer) during the synthesis of NC hydrogels, MMT platelets were considered chemical “plane” cross‐linkers, different from “point” cross‐linkers. With increasing amount of MMT, the crosslinking degree enhanced, causing a decrease of the swelling degree at equilibrium. Investigations of mechanical properties indicated that NC hydrogels exhibited enhanced strength and toughness, which resulted from chemical interaction between exfoliated MMT platelets and polymer chains in hydrogels. Dynamic shear measurements showed that both storage modulus and loss modulus increased with increasing MMT content. The idea described here provided a new route to prepare hydrogels with high mechanical properties by using alternative natural Na‐MMT. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1020–1026  相似文献   
63.
In this communication, we report the synthesis of small‐sized (<10 nm), water‐soluble, magnetic nanoparticles (MNPs) coated with polyhedral oligomeric silsesquioxanes (POSS), which contain either polyethylene glycol (PEG) or octa(tetramethylammonium) (OctaTMA) as functional groups. The POSS‐coated MNPs exhibit superparamagnetic behavior with saturation magnetic moments (51–53 emu g?1) comparable to silica‐coated MNPs. They also provide good colloidal stability at different pH and salt concentrations, and low cytotoxicity to MCF‐7 human breast epithelial cells. The relaxivity data and magnetic resonance (MR) phantom images demonstrate the potential application of these MNPs in bioimaging.  相似文献   
64.
In this paper, we study generalized Douglas–Weyl(α, β)-metrics. Suppose that a regular(α, β)-metric F is not of Randers type. We prove that F is a generalized Douglas–Weyl metric with vanishing S-curvature if and only if it is a Berwald metric. Moreover, by ignoring the regularity, if F is not a Berwald metric, then we find a family of almost regular Finsler metrics which is not Douglas nor Weyl. As its application, we show that generalized Douglas–Weyl square metric or Matsumoto metric with isotropic mean Berwald curvature are Berwald metrics.  相似文献   
65.
The indentation technique is widely used in measuring the mechanical properties of soft matter at the microscale or nanoscale,but still faces challenges by these unique properties as well as the consequent strong surface adhesion, including the strong nonlinear effect, unclear judgment of the contact point, difficulties in estimating the contact area, and the risk of the indenter piercing the sample. Here we propose a two-step method to solve these problems: lay a hard film on a soft matter, and obtain the viscoelastic properties of this soft matter through the indentation response of this composite structure. We first establish a theoretical indentation model of the hard film-soft substrate system based on the theory of plates, elastic-viscoelastic correspondence principle and Boltzmann superposition principle. To verify the correctness of this method, we measure the mechanical properties of the methyl vinyl silicone rubber(MVSR) covered by a Cu nanofilm. Finally, we test the effectiveness and error sensitivity of this method with the finite element method(FEM). The results show that our method can accurately measure the mechanical properties of soft matter, while effectively circumventing the problems of the traditional indentation technique.  相似文献   
66.
67.
Polymer electrolytes containing N,N′-(trans-cyclohexane-1,4-diyl)dibenzamide linkages, polyethylene ((CH2)m, m = 2, 4, 10) spacers, and bis(trifluoromethanesulfonyl)amide (TFSA) or bis(fluorosulfonyl)amide (FSA) counteranions (polymer abbreviation: CDBAm•X; m = 2, 4, 10; X = TFSA, FSA) have been synthesized, adding to our previous report (m = 6). In addition, their ability to effect the gelation of six ionic liquids and the properties of the resulting ionogels have been examined. The polymers, except for CDBA10•TFSA, effect the gelation for all ionic liquids used in this study at fairly low concentrations (0.9–50 g/L). Ionogel ionic conductivity is not dependent on the spacer length, but does decrease slightly as increasing amounts of the gelatinizer are introduced. In contrast to ionic conductivity, the temperatures at which these ionogels transition into isotropic fluids is dependent on the spacer length; the gel composed of [EMI][FSA] and 100 g/L of CDBA6•FSA transforms at 120 °C, while the gel composed of [EMI][FSA] and 5 g/L of CDBA2•FSA does not transform into a sol even when temperatures become 155 °C. In brief, ionogel heat resistance can be improved by changing the spacer length of the polyelectrolyte. Finally, it has been determined using cyclic voltammetry that the potential window of the polyelectrolytes is particularly wide, ranging from −1.6 to 2.5 V. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 249–255  相似文献   
68.
Biological systems show impressive control over the shape, size and organization of mineral structures, which often leads to advanced physical properties that are tuned to the function of these materials. Such control is also found in magnetotactic bacteria, which produce—in aqueous medium and at room temperature—magnetite nanoparticles with precisely controlled morphologies and sizes that are generally only accessible in synthetic systems with the use of organic solvents and/or the use of high‐temperature methods. The synthesis of magnetite under biomimetic conditions, that is, in water and at room temperature and using polymeric additives as control agents, is of interest as a green production method for magnetic nanoparticles. Inspired by the process of magnetite biomineralization, a rational approach is taken by the use of a solid precursor for the synthesis of magnetite nanoparticles. The conversion of a ferrous hydroxide precursor, which we demonstrate with cryo‐TEM and low‐dose electron diffraction, is used to achieve control over the solution supersaturation such that crystal growth can be regulated through the interaction with poly‐(α,β)‐dl ‐aspartic acid, a soluble, negatively charged polymer. In this way, stable suspensions of nanocrystals are achieved that show remanence and coercivity at the size limit of superparamagnetism, and which are able to align their magnetic moments forming strings in solution as is demonstrated by cryo‐electron tomography.  相似文献   
69.
Through a solid‐state reaction, a practically phase pure powder of Ba3V2S4O3 was obtained. The crystal structure was confirmed by X‐ray single‐crystal and synchrotron X‐ray powder diffraction (P63, a=10.1620(2), c=5.93212(1) Å). X‐ray absorption spectroscopy, in conjunction with multiplet calculations, clearly describes the vanadium in charge‐disproportionated VIIIS6 and VVSO3 coordinations. The compound is shown to be a strongly correlated Mott insulator, which contradicts previous predictions. Magnetic and specific heat measurements suggest dominant antiferromagnetic spin interactions concomitant with a weak residual ferromagnetic component, and that intrinsic geometric frustration prevents long‐range order from evolving.  相似文献   
70.
Silver nanoparticles (NPs) ranging in size from 40 to 100 nm were prepared in high yield by using an improved seed‐mediated method. The homogeneous Ag NPs were used as building blocks for 2D assembled Ag NP arrays by using an oil/water interface. A close‐packed 2D array of Ag NPs was fabricated by using packing molecules (3‐mercaptopropyltrimethoxysilane) to control the interparticle spacing. The homogeneous 2D Ag NP array exhibited a strong quadrupolar cooperative plasmon mode resonance and a dipolar red‐shift relative to individual Ag NPs suspended in solution. A well‐arranged 2D Ag NP array was embedded in polydimethylsiloxane film and, with biaxial stretching to control the interparticle distance, concomitant variations of the quadrupolar and dipolar couplings were observed. As the interparticle distance increased, the intensity of the quadrupolar cooperative plasmon mode resonance decreased and dipolar coupling completely disappeared. The local electric field of the 2D Ag NP array was calculated by using finite difference time domain simulation and qualitatively showed agreement with the experimental measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号